COPPER REMOVAL FROM MINE DRAINAGE BY AN EXPERIMENTAL WETLAND AT
BELL COPPER MINE, SMITHERS, B.C.
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Experimental wetlands removed copper in low strength (0.3-1.0 ppm, pH 7-8) and high strength (35-50
ppm, pH 3.5) mine drainage at the former Bell copper mine. Copper removal from the low strength
mine drainage exceeded 98%, even during winter operation. Removal efficiency for the high strength
mine drainage was initially similar, but it gradually deteriorated. Copper removal was a function of
retention time, better removal being observed with a greater retention time.

Some metal was taken by plants in the experimental wetlands. However, copper was predominantly
retained in the wetland peat, or sediments, building up to levels of nearly 1.0% after three years.
Copper accumulated in the inlet section of the ponds approximately twice more than in the outlet
section.

Sulphide, produced by sulphide-reducing bacteria (SRB), was detected in the peat interstitial water.
However, while mineralogical analyses indicated the presence of copper sulphides in the peat,
sequential leaching of this substrate showed that copper was mainly distributed among organically-
bound and oxide-bound phases, with a smaller proportion present as sulphides. The available data
suggest that copper was retained as sulphides when low strength mine drainage was applied to the
wetlands, but that the low pH of the high strength mine drainage prevented their formation.

Key Words: acid mine drainage, wetland treatment systems, cold climate, sulphate-reducing bacteria,
sequential leach analysis, copper geochemistry.

Introduction

A growing literature has demonstrated the effectiveness of wetlands in removing metals from
mine drainage (1,2). Treatment of acidic drainage from Eastern coal mines has been shown to occur
primarily through the oxidation and hydrolysis of dissolved iron and manganese (3). Reports on natural
wetlands (4, 5, 6) and constructed wetlands (7,8) also implicate SRB-generated hydrogen sulphide in
the metal removal process. Considering the characteristics of drainage from base metal mines, the latter
process may be more important for treatment than the former.

To ascertain the effectiveness of wetlands in treating drainage from base metal mines, Noranda
Minerals Inc. sponsored the development, operation and monitoring of two experimental wetlands
(“large” and “small” wetlands) at the former Bell Copper Mine. The test program had two main
objectives: a) to determine the level of treatment achievable at a Northern mine on a year-round basis,
and b) to establish process-based desigh parameters for construction of wetlands at Canadian mines.
From 1991 to 1993, the experimental wetlands have been monitored for influent and effluent
composition, vegetation, sediment chemistry and microbiology, and process engineering aspects.
Together, these investigations have characterized their performance and have identified processes
responsible for improving water quality. Key findings from these investigations are presented herein.
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Methods

it iption he experimental wetlan

Bell Copper mine is a former
open pit mine located on Newman
Peninsula, Babine Lake, approximately
65 km northeast of Smithers, B.C.
(Figure 1). Two membrane-lined ponds
with nominal surface areas of 300 m’
(large pond) and 75 m® (small pond)
were prepared in 1990. They were
fertilized with manure and planted with %

\—\ Northwest Territories

British

Columbia Alberta

floated peat mats (approximately 45 cm * Bell Copper

thick) obtained from a nearby donor site
on the property (Newman Lake). The .

peat mats were dominated by the sedges Pacie
Carex aquatilis and C. laeviculmis,
species common in the area. Significant
numbers of cattails (Typha latifolia) were
also planted into the small wetland. By
1991, both wetlands were fully covered with vegetation.

h teristi he tr

Figure 1. Location of the study site, the former Bell Copper mine.

Water from two different sources on the property was used in the study: a low strength (0.3-1.0
ppm copper, pH 6-8) and a high strength (35-50 ppm copper, pH 3.5) seep. Levels of other metals
were negligible, except for sub-ppm concentrations of iron and zinc (9). Sulphate concentrations in
both sources of water were greater than 2000 ppm. Influent and effluent composition were monitored
bi-weekly throughout the project by measuring pH, conductivity, sulphate, total and dissolved copper,
and iron.

Water was introduced to the wetlands from an adjacent open sump, which was replenished
weekly from the abovementioned sources. The water was pumped through metered pumps at nominal
flows of S8L/min. and 2L/min. for the large and small pond, respectively. The actual retention times
measured for the wetlands (using bromide as a conservative tracer) were 12 and 22.5 days for the large
and small pond, respectively. '

Wetland sampling

Yearly measurements of plant community structure were done from permanent study plots. The
donor site was sampled concurrently to provide reference (control) measurements and plant material.
Above- and belowground plant material was also collected from these sites for metal analyses.

In situ measurements of pore water pH and redox potential were made 2-3 times a year from a
total of 25 sites'. Dissolved sulphide concentrations in pore water at these site were measured
concurrently by withdrawing water samples and assaying immediately using the methylene blue
method. Peat sediment samples were also collected for microbial and chemical analyses. Samples were
transported and stored anaerobically at 4° C until processed. Chemical analyses for metals were

* These were located approximately 10 meters from the inlet and outlet sections of each pond (5 sites each, 20
sites altogether), and in Newman Lake (5 sites). They are referred in the text as the inlet and outlet sections of the
ponds, and the reference site. :
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performed on a nitric acid/hydrogen peroxide digest of the peat. Enumeration of SRB was done as
described in Battersby (10).

Sequential 1 eaching Analysis

Peat (composited from five individual samples for each pond section) sampled in October 1993
was analyzed for the distribution of copper in different phases, using the procedures for geochemical
analysis of sediments published by Hall and co-workers (11). These procedures were slightly modified
to account for the nature of peat in the wetlands (e.g., it is buoyant, anaerobic), as described by
Sobolewski (12). The steps used in the sequential leach and the presumed copper phases corresponding
to each step are summarized in Table 1.

Table 1. List of reagents and conditions used during a quantitative sequential leach of wetland peat samples.

EXTRACTANT PROCEDURE PHASE DISSOLVED
0.1 M Na,O,P;, pH 10 4 hour leach @ 25° C Soluble organic complexes
1 M NaOAc/HOAc, pH 5 16 hour leach @ 25° C Adsorbed and exchangeable metals,
carbonates '
1 M NH,0H/HCl in 0.25% HOAc | 4 hour leach @ 85° C Amorphous and crystalline iron
oxides
0.1 M NaCN, pH 10 Overnight leach in shaken Cyanide-sensitive sulphides
flasks @ 25° C
KCIOy/HCI; + 4 M HNO; 2 leaches @ 90° C; 1¥ Cyanide-resistant sulphides
without, 2 with HNO,
HFE-HCIO,-HNO,-HCl Total digest Silicates, residual crystalline fraction
Results
remov rimental wetl

From April 1992 until the end of June 1993, the experimental wetlands received mine drainage
with 0.3-1.0 ppm copper and a pH varying from 7-8. Copper removal exceeded 98% for both
wetlands, even during the winter of 1992/93 (Figures 2A, B). The effluent pH was slightly lowered by
the wetlands, ranging from 7.1-7.5 (data not shown). Figure 2 also shows that removal effectiveness
was unaffected by occasional spikes in copper concentrations of up to 10 ppm.

Starting on June 28, 1993, high strength mine drainage (35-50 ppm copper) was introduced into
the wetlands. For the first 6 weeks, copper was effectively removed by the wetlands (Figures 2C, D).
However, removal effectiveness gradually deteriorated until, by October 1993, copper removal reached
ca. 40% for the large wetland, and ca. 80% in the small wetland. At that time, plant dieback was
evident in both ponds, but it was undistinguishable from that at Newman Lake, the study reference site.

The period of efficient copper removal (following addition of the high strength feed)
corresponds to a time when effluent pH in both ponds remained above 6.5. Copper began to appear in
pond effluents when the pH decreased below 5.0. The decrease in pH for the large pond was faster
than for the small pond: by August 26, it had reached 4.7 for the large pond vs 5.1 for the small pond.
At that time, copper concentrations in their effluents were approximately 8 ppm and 0.5 ppm,
respectively. Their pH was still more than one pH unit more than that of the added feed, indicating that
the wetlands had some buffering capacity for at least 3 months after introduction of the high strength
feed.
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Figure 2. Copper concentrations and pH of influent and effluent for the large (A, C) and small pond (B, D). Refer to
legend above for symbols. These variables were measured continuously from April 13, 1992 to Oct 3, 1993 and are
shown separately for the low strength (A, B) and high strength feed (C, D). Note different scales used in A and B.
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Figure 3. Copper concentrations in plant leaves from inlet,
Analysis of pond sediments (peat middle, and outlet sections of ponds, and from reference site,
sampled deep and away from plants) expressed in mg/dry kg (ppm).

'
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showed that copper accumulated mainly there (Figure 4: contrast scale with that of Figure 3). More
accumulated in the inlet half of both ponds was greater than in the outlet half, reaching 8000 ppm in the small
pond inlet section.

Soon after the mine drainage was —
introduced into the ponds, blackened, 90001//// /
sulphur-smelling pockets of peat could be 41 1 /
observed. This suggested that SRBs might 7500+ | 1
have been active within the ponds. This 6000 // L1
was confirmed by enumeration of SRBs in T A Z
peat: their numbers ranged from 10° 4500} // ¥ 4
cell/dry gram at the end of the fall to 10° s000 | ] e eyl i
cell/dry gram during the summer. Sulphide = ' ssmnln||u
concentrations in the peat pore water 1500 g0
reflected these numbers, averaging 0.1 ppm o A Lrgd
during the fall months and 1 ppm during Bl Soqt 1oy T
the summer. The redox potential of D SePT 92 0182 Jun93 hug3 gerss
sediment pore water also reflected their SLgl Mlrg0 OSmil OSm-O @Ref |
activity. It ranged from -100 mV in the fall j

to -300 mV in the summer. Figure 4. Copper concentrations in peat from inlet and outlet

sections of ponds, and from reference site, in mg/dry kg (ppm).
ti h i

A sequential leach analysis was carried out to determine the mass of copper associated with
different phases in peat samples from the experimental wetlands and from Newman Lake. A prior
mineralogical examination had identified copper sulphides in peat samples collected from the
experimental wetlands, but their levels could not be quantified.

A greater mass of the copper was present in peat sampled near the inlet section of both ponds
compared with the outlet sections (Table 2). This copper was mainly in the organic and exchangeable
phases. Given the organic nature of peat, and given that the peat was acidic at the time of sampling, it

is likely that much of the copper recovered in the exchangeable phase was actually organically
complexed, rather than as a carbonate.

Surprisingly, 17% and 25% of the total mass of copper in the large and small ponds was
recovered in the iron oxide phase, respectively (Figure 5). The peat in both ponds has remained
anaerobic since 1991, suggesting that iron oxides might have been absent’. However, the observation
of ferrite-like minerals during a prior minerological examination suggests that crystalline iron oxides
were still present in the wetland peat.

> An “iron flush” was noted after mine drainage was first introduced into the ponds in 1991, supporting this idea.
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Table 2. Mass of copper extracted in each phase from wetland peat samples.

Sample Source Organic' Exchangeable Iron oxides CN-extractable CN-resistant  Residual
sulphides sulphides

Large Inlet 8.32? 2.72 2.07 0.70 0.04 0.01

Large Outlet 0.18 1.02 0.71 0.34 0.08 0.01

Small Inlet 3.76 3.12 1.96 1.07 0.12 0.02

Small Outlet 0.28 1.16 1.46 0.55 0.06 0.02

Newman Lake 0.01 0.00 0.02 0.10 0.00 0.00

Each phase corresponds to an extraction step, as described in Table 1.
Each value is averaged from duplicates, and is the amount of copper (in mg) extracted from 50 wet g of peat. Copper
concentrations in duplicate samples were typically within 30% of each other.

Copper sulphides were also
present in the peat, but in lower 100% -

proportions than in the other phases.
The only exception was for the peat
80% +
from Newman Lake, where nearly
90% of the copper was recovered in @ Residual
the cyanide-extractable phase. 60% 1 BCN-res.
Some copper was recovered OCN-extr.

. . . 40% + OFe oxides
in the cyanide-resistant phase, a

. . . BExch.
finding  consistent ~ with  the aorg
presumptive identification of 20% 1 -
chalcopyrite in peat sampled from
these sections (12). Copper sulphides 0% | : : ; ;
were present in greater proportion in Large  Large  Small  Small  N.L.

the outlet sections of the ponds than In Out in Out

in their inlet sections (Figure 35).

However, they were more abundant, Figure 5. Proportion of copper in each phase leached from the peat

sampled in the ponds and in Newman Lake.

on a mass basis, in their inlet sections
(Table 2).

Virtually no copper was recovered in the residual phase. This is consistent with the non-mineral
nature of the peat substrate. Indirectly, this finding confirms that extraction of earlier phases were
exhaustive. ’

Di .

One project objective was to assess the long-term potential of the wetlands for treating mine
drainage in a cold climate. The present study shows that low strength mine drainage can effectively be
treated on a year-round basis at mines in Northern locations (Figure 2A,B). The continued removal of
copper when the experimental wetlands were fully covered with ice underscores this fact. Although low
flows were maintained in this study, there is no reason to believe that wetland treatment systems cannot
be designed for higher flows.

Treatment of high strength feed by the experimental wetlands was ineffective, indicating that
some limit in the type of water that can be treated was exceeded (Figure 2C,D). This limitation could
be due to the low pH, the high acidity, or the high copper concentration of the high strength feed.
Figure 2 shows that the effluent pH started to decrease soon after the high strength feed was added,
whereas copper retention was not diminished until much later. This suggests that the decrease in
treatment performance was due to low pH (or high acidity, or both) rather than because of high copper

concentrations.
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The effluent pH decreased much more gradually than the influent pH when the high strength
feed was added (Figure 2C,D). Although dissolution of carbonates in the wetlands might account for
this, it seems unlikely to have been responsible for the prolonged buffering that was observed. Sulfate-
reducing bacteria (SRB) are known to produce bicarbonate (13), and their activity might account for
this buffering capacity. Such a function of SRB has often been proposed (5, 7, 14, 15).

By August 1993, the buffering capacity of the ponds began to be eroded. According to the
above argument, this would reflect a reduction in overall SRB activity. Consistent with this, reduced
SRB populations were measured at that time (data not shown)®. The production of bicarbonate by SRB
helps to maintain their environment at a pH of 7.0-7.5, which is optimal for growth and activity (13). It
is likely that this capacity to maintain optimal conditions was gradually overwhelmed by addition of the
high strength feed. Once this capacity was exceeded, SRB metabolic activity and growth started to
decrease, resulting in even less buffering capacity. This reduced buffering capacity resulted in a lower
pH, in further reduction of SRB activity, and so on until the microbial population collapsed (or adapted
to a new, more acidic environment). During this process, less sulphide would have been produced and
less copper sulphide would have been formed (if it was formed at all).

As noted earlier, differences in the buffering capacity of the two experimental wetlands were
observed. While the ponds differed in their plant composition, the difference in their retention times
(12 days vs 22.5 days for the large and small pond, respectively) was probably a more significant
factor. If the above idea that buffering capacity is due to SRB activity is correct, a higher retention time
would allow SRB to better resist the reduction of pore water pH by acidic mine drainage. The above
result is consistent with, and reflects the existence of a relationship between the acidity of the mine
drainage, retention time, and the production of alkalinity by SRB.

Another difference between the two ponds is that sedges in the large pond accumulated
significant amounts of copper, whereas cat-tails sampled in the small pond did not. Given that these
plants were sampled in late August 1993, it is also possible that the lower pH in the large pond, as
compared with the small pond, accounts for this difference.

There were consistent differences in the copper concentrations in peat between the inlet and
outlet sections of both ponds. Copper was predominantly in the organic phase in the inlet sections,
contrasting its much lower distribution in this phase of the outlet section samples (Figure 5). The
present data provide no basis for explaining this difference. However, this suggest that the organic
phase of the outlet section of the ponds was undersaturated with respect to copper. The more equal
distribution of copper in the iron oxide phase suggests that they were saturated with respect to copper,
or that the hydraulic retention time was insufficient to allow these interactions to go to completion.

The above results allow for an assessment of the viability of these types of wetlands in treating
mine drainage over long time periods. Long-term treatment will be only possible if copper is
continually removed and retained by the wetlands. Removal processes that quickly become saturated,
such as sorption to fixed sites, are unlikely to acheive this objective (16). While others have
demonstrated that peat-based wetland treatment systems can remove metals from mine drainage through
this process (17, 18), their binding-capacity is limited by the initial mass of organic matter plus that
which is added by plant growth. In these systems, improvement in water quality will cease when this
capacity is exceeded (15). Formation of sulphides in wetlands would provide for long-term removal of
metals, since metal sulphides will remain in their sediments as long as they are not re-oxidized. Unlike
sorption to fixed sites, sulphide production will proceed as long as sulphate is present in the influent
water and wetland plants provide organic substrate for growth of SRB.

5 SRB populations in peat were measured in August and in October 1993. Whether they were adapting to the
lower influent pH could not be determined.
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The results from the sequential leach analysis indicate that only a comparatively small amount
of copper was retained as sulphides. This suggests that the wetlands will not remove copper for a long
time. However, this conclusion is clouded by the fact that approximately 90% of the copper extracted
during the sequential leach originated from the high strength feed, the remaining 10% originating from
the low strength feed. Conditions within the peat undoubtedly changed after addition of the high
strength feed, and it is possible that copper was retained mostly as sulphides before its addition, but that
it was retained mostly as organic complexes afterward. Two arguments support this view.

Firstly, addition of high strength mine drainage lowered the pH in the peat, favouring the
formation of hydrogen sulphide at the expense of ionized sulphide, as shown below:

H,S © HoS,q > HS + H' pK=7.0

A pH reduction of approximately 1 unit was measured in the effluent shortly after addition of
the high strength feed, resulting in a decrease in jonized sulphide. Further reduction in sulphide levels
probably resulted from an observed decrease in SRB populations. Since copper reacts with the ionized
form of sulphide, the combination of these two effects might have resulted in substantially less copper
sulphide being formed.

Secondly, the copper in the peat from Newman Lake, the reference site for this study, was
mostly recovered in the cyanide-extractable phase7. If copper predominantly forms stable organic
complexes in peat-based wetlands, a significant amount should have been recovered in the organic
and/or exchangeable phases. This result indicates that, even if copper had sorbed onto organic matter
(as is probable), most of the copper entering the lake was eventually retained as copper sulphidesg. The
fact that Newman Lake is not known to have been exposed to low pH mine drainage, but more likely to
neutral mine drainage, suggests that the copper added in the low strength feed was probably similarly
retained as sulphides in the experimental wetlands.

Taken together, these arguments suggest that wetlands may effectively treat mine drainage in a
Northern climate, as long as the pH (or acidity) of the mine drainage is not too low. Pretreatment by
anoxic limestone trenches may permit enhance treatment effectiveness (or stability) for the more acidic
mine drainage. The design of these treatment systems should balance loadings of acidity with the
production of bicarbonate by SRB within the wetland. Given the low flows that were tested in this
study, our conclusions about treatment effectiveness are limited in their application to small seeps at
mine properties, not to systems with large flows. Further studies with other wetlands, both natural and
constructed, should help to identify the limitation of these systems.
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